ƒgƒbƒv

Šw—ð

˜_•¶

’˜‘

Žå—vŒ¤‹†ŠT—v

Œ¤‹†‹³ÞŠJ”­

Œ¤‹†“à—e

ƒŠƒ“ƒN

 


˜_•¶


‘S‚Ä‚ÌŠwp˜_•¶

 

‘n–ò‰»ŠwE¶•¨—L‹@‰»Šw

Šj“àŽó—e‘̃ŠƒKƒ“ƒh

Toshihiko Tashima, Hiroyuki Kagechika, Motonori Tsuji, Hiroshi Fukasawa, Emiko Kawachi, Yuichi Hashimoto, Koichi Shudo. Polyenylidene Thiazolidine Derivatives with Retinoidal Activities. Chem. Pharm. Bull.,1997, 45, 1805-1813.

Kiminori Ohta, Motonori Tsuji, Emiko Kawachi, Hiroshi Fukasawa, Yuichi Hashimoto, Koichi Shudo, Hiroyuki Kagechika. Potent Retinoid Synergists with a Diphenylamine Skeleton. Biol. Pharm. Bull.,1998, 21, 544-546.

Toru Iijima, Yasuyuki Endo, Motonori Tsuji, Emiko Kawachi, Hiroyuki Kagechika, Koichi Shudo. Dicarba-closo-dodecaboranes as a Pharmacophore. Retinoidal Antagonists and Potential Agonists. Chem. Pharm. Bull., 1999, 47, 398-404.

Masayuki Ebisawa, Hiroki Umemiya, Kiminori Ohta, Hiroshi Fukasawa, Emiko Kawachi, Ghislaine Christoffel, Hinrich Gronemeyer, Motonori Tsuji, Yuichi Hashimoto, Koichi Shudo, Hiroyuki Kagechika. Retinoid X Receptor-Antagonistic Diazepinylbenzoic Acids. Chem. Pharm. Bull.,1999, 47, 1778-1786.

Wei Yang, Zaiqiang Yu, Mari Chiyoya, Xu Liu, Kazuyuki Daitoku, Shigeru Motomura, Tadaatsu Imaizumi, Ikuo Fukuda, Ken-Ichi Furukawa, Motonori Tsuji, Kazuhiko Seya. Menaquinone-4 Accelerates Calcification of Human Aortic Valve Interstitial Cells in High-Phosphate Medium through PXR. J. Pharmacol. Exp. Ther., 372, 277-284, 2020.

RƒEƒCƒ‹ƒX

Motonori Tsuji. Potential Anti-SARS-CoV-2 Drug Candidates Identified through Virtual Screening of the ChEMBL Database for Compounds that Target the Main Coronavirus Protease. FEBS Open Bio, 2020. DOI:10.1002/2211-5463.12875.

Uranan Tumkosit, Uamporn Siripanyaphinyo, Naokazu Takeda, Motonori Tsuji, Yusuke Maeda, Kriangsak Ruchusatsawat, Tatsuo Shioda, Hiroto Mizushima, Prukswan Chetanachan, Pattara Wongjaroen, Yoshiharu Matsuura, Masashi Tatsumi, Atsushi Tanaka. Anti-chikungunya Virus Monoclonal Antibody Inhibiting Viral Fusion and Release. J Virol., 2020. DOI: 10.1128/JVI.00252-20.

Riho Tateyama-Makino, Mari Abe-Yutori, Taku Iwamoto, Kota Tsutsumi, Motonori Tsuji, Satoru Morishita, Kei Kurita, Yukio Yamamoto, Eiji Nishinaga, Keiichi Tsukinoki.The inhibitory effects of toothpaste and mouthwash ingredients on the interaction between the SARS-CoV-2 spike protein and ACE2, and the protease activity of TMPRSS2 in vitro. PLOS ONE, 16, e0257705-e0257705, 2021.

Motonori Tsuji. Virtual Screening and quantum chemistry analysis for SARS-CoV-2 RNA-dependent RNA polymerase using the ChEMBL database: Reproduction of the remdesivir-RTP and favipiravir-RTP binding modes obtained from cryo-EM experiments with high binding affinity. Int. J. Mol. Sci., 23, 11009, 2022.

ƒTƒCƒgƒJƒCƒ“

Motonori Tsuji, Yukiko Koiso, Hiroyasu Takahashi, Yuichi Hashimoto, Yasuyuki Endo. Modulators of Tumor Necrosis Factor a Production Bearing Dicarba-closo-dodecaborane as a Hydrophobic Pharmacophore. Biol. Pharm. Bull., 2000, 23, 513-516.

A•¨ƒzƒ‹ƒ‚ƒ“

Motonori Tsuji, Eiichi Kuwano, Tetsuya Saito, Morifusa Eto. Root Growth-promoting Activities of N-Acyl-L-proline Derivatives. Biosci. Biotech. Biochem.,1992, 56, 778-782.

_Œo“`’B•¨Ž¿

Norio Ogata, Hideaki Tagishi, Motonori Tsuji. Inhibition of Acetylcholinesterase by Wood Creosote and Simple Phenolic Compounds. Chem. Pharm. Bull., 68, 1193-1200, 2020.

Ž©ŒÈ–ƉuŽ¾Š³

Bunki Natsumoto, Hirofumi Shoda, Yasuo Nagafuchi, Mineto Ota, Takashi Okumura, Yumi Horie, Tomohisa Okamura, Kazuhiko Yamamoto, Motonori Tsuji, Makoto Otsu, Hideki Taniguchi, Keishi Fujio. Functional evaluation of rare OASL variants by analysis of SLE patient-derived iPSCs. Journal of Autoimmunity, 139, 103085, 2023. https://doi.org/10.1016/j.jaut.2023.103085

R¶•¨Ž¿

Jun-ichi Wachino, Wanchun Jin, Chihiro Norizuki, Kouji Kimura, Motonori Tsuji, Hiromasa Kurosaki, Yoshichika Arakawa. Hydroxyhexylitaconic acids as potent IMP-type metallo-ƒÀ-lactamase inhibitors for controlling carbapenem resistance in Enterobacterales. Microbiology Spectrum, 2024. https://doi.org/10.1128/spectrum.02344-23

 

•ªŽqÝŒvi˜_—“Iƒhƒ‰ƒbƒOƒfƒUƒCƒ“jEƒCƒ“ƒVƒŠƒR‘n–ò

’҈꓿.* —L‹@‡¬‰»ŠwŽÒ‚Ì‚½‚߂̘_—“Iƒhƒ‰ƒbƒOƒfƒUƒCƒ“. •ªŽq‹@”\Œ¤‹†Š‹I—v, 2006, 1-9.

’҈꓿.* \‘¢ƒx[ƒX‘n–òŽx‰‡ƒVƒXƒeƒ€, HMHC‚¨‚æ‚ÑDSHC‚ÌŠJ”­. Mol. Sci., 2007, 1, NP004.

Motonori Tsuji,* Koichi Shudo, Hiroyuki Kagechika. Docking Simulations Suggest that all-trans Retinoic Acid Could Bind to Retinoid X Receptors. J. Comput. Aided Mol. Des., 2015, 29, 975-988.iŠT—vj

Motonori Tsuji.* A Ligand-Entry Surface of the Nuclear Receptor Superfamily Consists of the Helix H3 of the Ligand-Binding Domain.J. Mol. Graph. Model., 2015, 62, 262-275.iŠT—vj

Motonori Tsuji,* Koichi Shudo, Hiroyuki Kagechika. Identifying the Receptor Subtype Selectivity of Retinoid X and Retinoic Acid Receptors via Quantum Mechanics. FEBS Open Bio., 2017, 7, 391-396, DOI: 10.1002/2211-5463.12188.iŠT—vj

Motonori Tsuji.* Antagonist-Perturbation Mechanism for Activation Function-2 Fixed Motifs: Active Conformation and Docking Mode of Retinoid X Receptor Antagonists. J. Comput. Aided Mol. Des., 2017, 31, 577-585, DOI: 10.1007/s10822-017-0025-6.iŠT—vj

 

\‘¢¶•¨Šw

Motonori Tsuji.* Local Motifs Involved in the Canonical Structure of the Ligand-Binding Domain in the Nuclear Receptor Superfamily. J. Struct. Biol., 2014, 185, 355-365.iŠT—vj

 

—˜_‰»Šw

Tomohiko Ohwada, Masanobu Uchiyama, Motonori Tsuji, Iwao Okamoto, Koichi Shudo. Orbital Unsymmetrization of Olefins Arising from Non-equivalent Orbital Interactions. s-p Coupling in Bicyclo[2.2.2]octenes. Chem. Pharm. Bull.,1996, 44, 296-306.

Tomohiko Ohwada, Motonori Tsuji, Iwao Okamoto, Koichi Shudo. A Remote Substituent Can Determine Magnitude of Facial Selectivity in Benzobicyclo[2.2.2]octatrienes. Tetrahedron Lett., 1996, 37, 2609-2612.

Motonori Tsuji, Tomohiko Ohwada, Koichi Shudo. A cyclopropyl Group Shows Reverse Facial Selectivity Depending on the Bicyclic Ring System. Tetrahedron Lett., 1997, 38, 6693-6696.

Motonori Tsuji, Tomohiko Ohwada, Koichi Shudo. Facial Selectivities of Benzofluorenes Bearing a Carbonyl, an Olefin, or a Diene Group in Spiro Geometry. p Spiro Substituent Effects. Tetrahedron Lett., 1998, 39, 403-406.

Motonori Tsuji.* On Attempts at Generation of Carboranyl Carbocation. J. Org. Chem., 2003, 68, 9589-9597.iŠT—vj

Motonori Tsuji.* Most Stable Conformation of the Cyclopropane Ring Attached at a Carbon Atom in a 1,2-Dicarba-closo-dodecaborane(12) System. J. Org. Chem., 2004, 69, 4063-4074.iŠT—vj

Motonori Tsuji.* Geometrical Dependence of the Highest Occupied Molecular Orbital in Bicyclic Systems: p Facial Stereoselectivity of Bicyclic and Tricyclic Olefins. Asian J. Org. Chem., 2015, 4, 659-673.iŠT—vj

 

–³‹@‰»Šw

Yasuyuki Endo, Kyoko Yaguchi, Motonori Tsuji, Kentaro Yamaguchi, Koichi Shudo. Functionalization of Polymethylcarboranes. Preparation and Reactivity of 2,3,4,5,6,7,8,9,10,11-Decamethyl-1,12-dicarba-closo-dodecaborane(12)-1-carboxylic Acid. Chem. Pharm. Bull., 1999, 47, 699-701.

 

 


ŠwˆÊ˜_•¶


 

’҈꓿.* uƒrƒVƒNƒ‚¨‚æ‚уXƒsƒƒIƒŒƒtƒBƒ“‚Ì”½‰ž–Ê‘I‘ð«‚ðŒˆ’è‚·‚é‹O“¹‘ŠŒÝì—pvA“Œ‹ž‘åŠwA–òŠw”ŽŽmA‘æ13735†A172•ÅA1998”N3ŒŽ11“úAŽå¸FŽñ“¡hˆê‹³ŽöAŽÄú±³Ÿ‹³ŽöA•ŸŽR“§‹³ŽöA’·–ì“N—Y‹³ŽöA¬“c“ˆ˜a“¿•‹³Žö.

Motonori Tsuji.* Synthesis and Plant Growth Regulation Activity of N-Acyl-L-proline DerivativesA‹ãB‘åŠwA”_ŠwCŽmA‘æ1964†A63•Åi‰¢•¶jA1992”N3ŒŽ27“úAŽå¸F]“¡Žç‘‹³ŽöA’JŒû‰h“ñ‹³ŽöAŒK–ì‰hˆê•‹³Žö.

Motonori Tsuji.* Synthesis and Biological Activity of Abscisic Acid MimicsA‹ãB‹¤—§‘åŠwAHŠwŽmA‘æ3398†A45•Åi‰¢•¶jA1990”N3ŒŽ20“úAŽå¸F‹g씎“¹‹³Žö.

 

 


Šw‰ï”­•\


 

µ‘Òu‰‰EˆË—Šu‰‰

Z’҈꓿. µ‘Òu‰‰AAutoDock‚¨‚æ‚ÑAutoDock Vina‚ÌŠT—v‚ÆŽg—p•û–@FƒtƒŠ[ƒ\ƒtƒg‚¾‚¯‚ÅŽÀŽ{‚·‚é\‘¢ƒx[ƒXƒhƒ‰ƒbƒOƒfƒUƒCƒ“. –kŠC“¹‰ÈŠw‘åŠwA2023”N8ŒŽ10“úAŒvŽZ‰ÈŠw‹Zp‚𬒷“I”­“W‚É“±‚­ƒvƒƒtƒFƒbƒVƒ‡ƒiƒ‹lވ笂̑«ê‚­‚èAƒIƒ“ƒ‰ƒCƒ“.

Z’҈꓿. \‘¢ƒx[ƒX‘n–òŠî”Õ‹Zp‚ÌŒ¤‹†ŠJ”­‚Æ‚»‚̉ž—pFŠj“àŽó—e‘̃ŠƒKƒ“ƒhACOVID-19Ž¡—Öò‚̃hƒ‰ƒbƒOƒfƒUƒCƒ“. ˆê”ÊŽÐ’c–@lŠé‹ÆŒ¤‹†‰ïA2021”N5ŒŽ14“úA‘æ34ŠúCAMMƒtƒH[ƒ‰ƒ€AƒIƒ“ƒ‰ƒCƒ“.

›’҈꓿. ”½‰ž–Ê‘I‘ð«‚ðŽx”z‚·‚é‹O“¹‘ŠŒÝì—p—˜_AŠj“àƒŒƒZƒvƒ^[ƒŠƒKƒ“ƒhŒ‹‡—̈泀ƒtƒH[ƒ‹ƒh‚ÉŠÖ‚í‚é‹ÇŠƒ‚ƒ`[ƒt—˜_AŠj“àƒŒƒZƒvƒ^[ƒŠƒKƒ“ƒh”FŽ¯‚É‚¨‚¯‚éƒhƒ‰ƒCƒrƒ“ƒOƒtƒH[ƒXA‚»‚µ‚Ä\‘¢ƒx[ƒX‘n–òŽx‰‡ƒVƒXƒeƒ€‚ÌŠJ”­. ˆê”ÊŽÐ’c–@lŠé‹ÆŒ¤‹†‰ïA2008”N1ŒŽ11“úA‘æ21ŠúCAMMƒtƒH[ƒ‰ƒ€A“Œ‹ž•\ŽQ“¹uƒAƒCƒr[ƒz[ƒ‹ÂŠw‰ïŠÙv.

 

‘ÛŠw‰ï

Riho Tateyama-Makino, Mari Abe-Yuroi, Taku Iwamoto, Kota Tsutsumi, Motonori Tsuji, Satoru Morishita, Kei Kurita, Eiji Nishinaga, Yukio Ymamamoto, Keiichi Tsukinoki. Inhibitory effects of toothpaste and mouthwash ingredients on SARS-CoV-2 infection in vitro. International Association for Dental Research, 2022”N6ŒŽ.

Kota Tsutsumi, Riho Tateyama-Makino, Mari Abe-Yuroi, Taku Iwamoto, Motonori Tsuji, Satoru Morishita, Kei Kurita, Eiji Nishinaga, Yukio Ymamamoto, Keiichi Tsukinoki. Inhibitory effects of toothpaste and mouthwash ingredients on SARS-CoV-2 infection in vitro. EuroPerio10, 2022”N6ŒŽ.

Taku Iwamoto, Riho Tateyama-Makino, Mari Abe-Yutori, Kota Tsutsumi, Motonori Tsuji, Satoru Morishita, Kei Kurita, Eiji Nishinaga, Yukio Yamamoto, Keiichi Tsukinoki. The inhibitory effects of toothpaste and mouthwash ingredients on SARS-CoV-2 spike protein-ACE2 interaction, and TMPRSS2 protease activity in vitro. The 14th International Conference of Asian Academy of Preventive DesityA2021”N10ŒŽ.

Uranan TumkositAMotonori TsujiAPattara WongjaoenAMasashi TatsumiAAtsushi Tanaka. Neutraliznig Mechanism of A Monoclonal Antibody Specific to Chikunguya Virus Thai #16856 StrainAAsian-African Research Forum on Emerging and Reemerging Infections 2019A2019”N9ŒŽ.

Ebisawa, MasayukiATashima, ToshihikoATsuji, MotonoriAFukasawa, HiroshiAKawachi, EmikoAHashimoto, YuichiAShudo, KoichiAKagechika, Hiroyuki. Novel Retinoids Having a Thiazolidinedione GroupA216th ACS National MeetingABostonA1998”N8ŒŽ.

Ohta, KiminoriATsuji, MotonoriAKawachi, EmikoAFukasawa, HiroshiA Hashimoto, YuichiAShudo, KoichiAKagechika, Hiroyuki. Novel Diphenylamine Derivatives with Potent Retinoid Synergistic ActivityA216th ACS National MeetingABostonA1998”N8ŒŽ.

 

ˆê”Êu‰‰“™

‰Yì—›‰ÔA—L“c‘ì–îA’҈꓿A´…NŒõ. ƒÀ-ƒOƒŠƒ`ƒ‹ƒŒƒ`ƒ“Ž_‚̃}ƒgƒŠƒbƒNƒXƒƒ^ƒƒvƒƒeƒA[ƒ[‘jŠQŒø‰Ê‚ɂ‚¢‚ÄA‘æ66‰ñt‹G“ú–{Ž•Žü•aŠw‰ïŠwp‘å‰ïA2023”N5ŒŽ.

Šâ–{‘ñA–q–ìä»”¿A—M’¹áÁ—¢A’çN‘¾A’҈꓿AX‰º‘AŒI“cŒ[AŽR–{KŽiAŽR–{K•vA’Ζ،bˆê. Ž•–ܬ•ª‚ÌVŒ^ƒRƒƒiƒEƒCƒ‹ƒX(SARS-CoV-2)Š´õŠÖ˜AˆöŽq‚ɑ΂·‚é‘jŠQì—pA‘æ1‰ñ“ú–{‘Á‰tƒPƒAŒ¤‹†‰ïŠwpW‰ïA2022”N11ŒŽ.

›’҈꓿. ƒCƒ“ƒVƒŠƒRƒXƒNƒŠ[ƒjƒ“ƒO‚ÆCADD‚É‚æ‚éCOVID-19Ž¡—ÖòŒó•â‰»‡•¨‚Ì’TõŒ¤‹†A‘æ50‰ñ\‘¢Šˆ«‘ŠŠÖƒVƒ“ƒ|ƒWƒEƒ€A2022”N11ŒŽ.

‰ª‘º‰À“ÞA’I’Jˆ»A’҈꓿A‘O“c—T•ãA‰e‹ßO”V. COVID-19Ž¡—ÖòŠJ”­‚ð–Ú“I‚Æ‚µ‚½ERƒŠƒKƒ“ƒh‚Ì\‘¢“WŠJA•¶•”‰ÈŠwÈ‹¤“¯—˜—pE‹¤“¯Œ¤‹†‹’“_¶‘̈㎕HŠw‹¤“¯Œ¤‹†‹’“_—ߘa3”N“x¬‰Ê•ñ‰ïA2022”N3ŒŽ.

‰Ä–{•¶‹PA¯“cG•¶A‰iŸº‘×—YA‘å’Ã^A’҈꓿AŽR–{ˆê•FA’JŒû‰pŽ÷A“¡”ö‰ÀŽu. SLEŠ³ŽÒ—R—ˆiPS×–E‚ð—p‚¢‚½rare variants‚Ì’Tõ‚ƖƉuŠw“I‹@˜‚̉ð–¾A‘æ5‰ñ“ú–{–Ɖu•s‘SEŽ©ŒÈ‰ŠÇŠw‰ï‘‰ïA2022”N2ŒŽ.

—M’¹áÁ—¢A’çN‘¾A’҈꓿AŒI“cŒ[A¼‰i‰pŽiA’Ζ،bˆê. VŒ^ƒRƒƒiƒEƒCƒ‹ƒXiSARS-CoV-2jŠ´õŠÖ˜AˆöŽqSƒ^ƒ“ƒpƒN-ACE2Œ‹‡‚ɑ΂·‚鎕–Ü‹y‚ÑôŒûܬ•ª‚Ì‘jŠQì—p. ‘æ63‰ñŽ•‰ÈŠî‘bˆãŠw‰ïŠwp‘å‰ïA2021”N10ŒŽ.

–q–ìä»”¿AŠâ–{‘ñA’҈꓿AX‰º‘AŽR–{K•vA’Ζ،bˆê. VŒ^ƒRƒƒiƒEƒCƒ‹ƒXiSARS-CoV-2jŠ´õŠÖ˜AˆöŽqTMPRSS2Šˆ«‚ɑ΂·‚鎕–Ü‹y‚ÑôŒûܬ•ª‚Ì‘jŠQì—p. ‘æ63‰ñŽ•‰ÈŠî‘bˆãŠw‰ïŠwp‘å‰ïA2021”N10ŒŽ.

‰Á“¡—z“ñAÄ–{ç—¢AˆÉ“¡”ü‹IŽqA’҈꓿A’O‰H—˜•vA¼ì”ü‰FA¶é^ˆê. A•¨ƒtƒBƒgƒPƒ~ƒJƒ‹‹y‚Ñ‚»‚Ì‘ãŽÓ•¨‚É‚æ‚éƒRƒƒiƒEƒCƒ‹ƒX3CLƒvƒƒeƒA[ƒ[‘jŠQA“ú–{”_Œ|‰»Šw‰ï2021”N“x‘å‰ïA2021”N3ŒŽ.

Z’҈꓿A‰e‹ßO”V. \‘¢ƒx[ƒX‘n–ò‚ÉŠî‚­COVID-19Ž¡—ÖòŒó•â‰»‡•¨‚Ì’TõŒ¤‹†A•¶•”‰ÈŠwÈ ‹¤“¯—˜—pE‹¤“¯Œ¤‹†‹’“_ ¶‘̈㎕HŠw‹¤“¯Œ¤‹†‹’“_ —ߘa2”N“x¬‰Ê•ñ‰ïA2021”N3ŒŽ.

Z’҈꓿A‰e‹ßO”V. COVID-19Ž¡—ÖòŒó•â‰»‡•¨‚Ì“¯’èFŠj“àŽó—e‘̃ŠƒKƒ“ƒhƒf[ƒ^ƒx[ƒX‚ð—p‚¢‚½SARS-CoV-2ƒƒCƒ“ƒvƒƒeƒA[ƒ[‚ɑ΂·‚éƒo[ƒ`ƒƒƒ‹ƒXƒNƒŠ[ƒjƒ“ƒOA‘æ31‰ñ“ú–{ƒŒƒ`ƒmƒCƒhŒ¤‹†‰ïŠwpW‰ïA2020”N10ŒŽ.

‰Á“¡—z“ñA¶é^ˆêA’҈꓿. A•¨¬•ª‹y‚Ñ‚»‚Ì‘ãŽÓŽY•¨‚É‚æ‚éƒRƒƒiƒEƒCƒ‹ƒX‚̃vƒƒeƒA[ƒ[‘jŠQA‘—§Œ¤‹†ŠJ”­–@l‰ÈŠw‹ZpU‹»‹@\ƒCƒmƒx[ƒVƒ‡ƒ“ƒWƒƒƒpƒ“2020o“WA2020”N9ŒŽ`2020”N11ŒŽ.

›’҈꓿. ƒCƒ“ƒVƒŠƒR‘n–òƒVƒXƒeƒ€ADocking Study with HyperChemiDSHCj‚ÆHomology Modeling Professional for HyperChemiHMHCj‚É‚æ‚é‘n–òŠî”Õ‹Zp‚Ì‚“x‰»A“ú–{ƒRƒ“ƒsƒ…[ƒ^‰»Šw‰ïA2018”N6ŒŽ.

›’҈꓿. AF-2ŒÅ’胂ƒ`[ƒtÛ“®ƒƒJƒjƒYƒ€FƒŒƒ`ƒmƒCƒhXƒŒƒZƒvƒ^[ƒAƒ“ƒ^ƒSƒjƒXƒg‚ÌŠˆ«ƒRƒ“ƒtƒHƒ[ƒVƒ‡ƒ“‚ƃhƒbƒLƒ“ƒOƒ‚[ƒhA“ú–{–òŠw‰ï”N‰ïA2018”N3ŒŽ.

›’҈꓿AŽñ“¡hˆêA‰e‹ßO”V. ƒhƒbƒLƒ“ƒOAQM/MMA‘SŒn—ÊŽq—ÍŠwŒvŽZ‚É‚æ‚郌ƒ`ƒmƒCƒh‚̃ŒƒZƒvƒ^[ƒTƒuƒ^ƒCƒv‘I‘𫎯•ÊFATRA‚Í“àˆö«RXRƒŠƒKƒ“ƒh‚Æ‚µ‚Äì—p‚·‚éA‘æ28‰ñ“ú–{ƒŒƒ`ƒmƒCƒhŒ¤‹†‰ïŠwpW‰ïA2017”N11ŒŽ.

›’҈꓿. ƒwƒŠƒbƒNƒX3ŽO“_‰ŠúŒ‹‡‰¼àFŠj“àŽó—e‘̃X[ƒp[ƒtƒ@ƒ~ƒŠ[‚̃ŠƒKƒ“ƒhŒ‹‡—̈æ‚É‚¨‚¯‚郊ƒKƒ“ƒh•â‘«ƒƒJƒjƒYƒ€‚ƃAƒ|‘Ì‚©‚çƒzƒ‘Ì‚Ö‚Ì\‘¢‘JˆÚ‚ÉŠÖ‚·‚é—‰ðA“ú–{–òŠw‰ï”N‰ïA2017”N3ŒŽ.

›’҈꓿. ƒrƒVƒNƒŒn‚É‚¨‚¯‚éÅ‚”í蕪Žq‹O“¹‚ÌŠô‰½Šw“IˆË‘¶FƒrƒVƒNƒƒIƒŒƒtƒBƒ“‚Ì”½‰ž–Ê‘I‘ð«‚Ì‹NŒ¹A“ú–{–òŠw‰ï”N‰ïA2016”N3ŒŽ.

›’҈꓿. Šj“àŽó—e‘̃ŠƒKƒ“ƒhŒ‹‡—̈泀\‘¢‚ÉŠÖ‚í‚é‹ÇŠƒ‚ƒ`[ƒt\‘¢‚Æ‚»‚Ì‹@”\A“ú–{–òŠw‰ï”N‰ïA2015”N3ŒŽ.

‘¾“cŒö‹KA’҈꓿A‰Í“àŒb”üŽqA[àVOŽuA‰e‹ßO”V;@“Œ‘啪¶Œ¤@‹´–{—Sˆê. Šj“àƒŒƒ`ƒmƒCƒhŽó—e‘Ì‚Éì—p‚·‚éƒsƒŠƒ~ƒWƒ“ƒJƒ‹ƒ{ƒ“Ž_A“ú–{–òŠw‰ï”N‰ïA2000”N3ŒŽ.

‘¾“cŒö‹KA’҈꓿A‰Í“àŒb”üŽqA[àVOŽuA‰e‹ßO”VAŽñ“¡hˆê;@“Œ‘啪¶Œ¤@‹´–{—Sˆê. V‹KƒŒƒ`ƒmƒCƒh§Œä‰»‡•¨‚Ì‘n»A“ú–{–òŠw‰ï”N‰ïA1998”N3ŒŽ.

›’҈꓿A‘å˜a“c’q•FAŽñ“¡hˆê. Diels-AlderƒWƒGƒ“‚̃ΖʑI‘ð«A“ú–{–òŠw‰ï”N‰ïA1997”N3ŒŽ.

›’҈꓿A‘å˜a“c’q•FA“àŽR^LAŽñ“¡hˆêG@ç—t‘啪Í@ŽRŒûŒ’‘¾˜Y. ƒrƒVƒNƒ[2.2.2]ƒIƒNƒeƒ“‚É‚¨‚¯‚éƒÎ–Ê‘I‘ð«‚ւ̃VƒNƒƒvƒƒpƒ“ŠÂ‚ÌŒø‰ÊA“ú–{–òŠw‰ï”N‰ïA1996”N3ŒŽ.

›’҈꓿A‘å˜a“c’q•FAŽñ“¡hˆê. ƒÎ\ƒÎ‹O“¹‘ŠŒÝì—p‚É‚æ‚éƒÎ–Ê”ñ“™‰¿‚Ì—§‘Ì‘I‘ð«‚É‹y‚Ú‚·‰e‹¿A“ú–{–òŠw‰ï”N‰ïA1995”N3ŒŽ.

“‡è‰p•vA’҈꓿A‰e‹ßO”VA‰Í“àŒb”üŽqAŽñ“¡hˆê. ƒAƒ~ƒh‚Ì—§‘̉»Šw‚ðŠˆ—p‚µ‚½V‹KƒŒƒ`ƒmƒCƒh‚̇¬‚ÆŠˆ«A“ú–{–òŠw‰ï”N‰ïA1994”N3ŒŽ.

›’҈꓿A‘å˜a“c’q•FAŽñ“¡hˆê. ƒAƒƒ}ƒeƒBƒbƒNƒXƒsƒƒPƒgƒ“‹y‚уIƒŒƒtƒBƒ“‚É‚¨‚¯‚éƒÎ–Ê‘I‘ð«A“ú–{–òŠw‰ï”N‰ïA1994”N3ŒŽ.

›’҈꓿AŒK–ì‰hˆêAÖ“¡“NÆA]“¡Žç‘. N-ƒAƒVƒ‹-L-ƒvƒƒŠƒ“—U“±‘Ì‚Ì—cªL’·‘£iŠˆ«A“ú–{”_Œ|‰»Šw‰ï”N‰ïA1991”N3ŒŽ.

›’҈꓿AŒK–ì‰hˆêA]“¡Žç‘. ƒvƒƒŠƒ“—U“±‘Ì‚ÌA•¨¶ˆç‚É‹y‚Ú‚·‰e‹¿AA•¨‰»Šw’²ßŠw‰ï”N‰ïA1991”N3ŒŽ.

 

ƒ[ƒNƒVƒ‡ƒbƒv

’҈꓿. i‹¤“¯jA\‘¢ƒx[ƒX‘n–òŽx‰‡ƒVƒXƒeƒ€iVirtual Screening SystemADocking Study with HyperChemAHomology Modeling for HyperChemAONIOM Interface for ReceptorAGaussian Interface for HyperChemjA‘æ8‰ñ“ú–{’`”’Ž¿‰ÈŠw‰ï”N‰ïA2008”N6ŒŽ.

’҈꓿.i‹¤“¯jA\‘¢ƒx[ƒX‘n–òŽx‰‡ƒVƒXƒeƒ€iVirtual Screening SystemADocking Study with HyperChemAHomology Modeling for HyperChemAONIOM Interface for ReceptorAGaussian Interface for HyperChemjA“ú–{–òŠw‰ï‘æ128”N‰ïA2008”N3ŒŽ.

’҈꓿.i‹¤“¯jA\‘¢ƒx[ƒX‘n–òŽx‰‡ƒVƒXƒeƒ€iVirtual Screening SystemADocking Study with HyperChemAHomology Modeling for HyperChemAONIOM Interface for ReceptorAGaussian Interface for HyperChemjA‘æ45‰ñ“ú–{¶•¨•¨—Šw‰ïA2007”N12ŒŽ.

’҈꓿.i‹¤“¯jA\‘¢ƒx[ƒX‘n–òŽx‰‡ƒVƒXƒeƒ€iVirtual Screening SystemADocking Study with HyperChemAHomology Modeling for HyperChemAONIOM Interface for ReceptorAGaussian Interface for HyperChemjA‘æ30‰ñ“ú–{•ªŽq¶•¨Šw”N‰ïE‘æ80‰ñ“ú–{¶‰»Šw‰ï‘å‰ï‡“¯‘å‰ïA2007”N12ŒŽ.

’҈꓿.i‹¤“¯jA\‘¢ƒx[ƒX‘n–òŽx‰‡ƒVƒXƒeƒ€iVirtual Screening SystemADocking Study with HyperChemAHomology Modeling for HyperChemAONIOM Interface for ReceptorAGaussian Interface for HyperChemjA“ú–{–òŠw‰ï‘æ127”N‰ïA2007”N3ŒŽ.

’҈꓿.i‹¤“¯jA\‘¢ƒx[ƒX‘n–òŽx‰‡ƒVƒXƒeƒ€iVirtual Screening SystemADocking Study with HyperChemAHomology Modeling for HyperChemAONIOM Interface for ReceptorAGaussian Interface for HyperChemjA“ú–{•ªŽq¶•¨Šw‰ï2006ƒtƒH[ƒ‰ƒ€A2006”N12ŒŽ.

’҈꓿.i‹¤“¯jA\‘¢ƒx[ƒX‘n–òŽx‰‡ƒVƒXƒeƒ€iVirtual Screening SystemADocking Study with HyperChemAHomology Modeling for HyperChemAONIOM Interface for ReceptorAGaussian Interface for HyperChemjA“ú–{ƒRƒ“ƒsƒ…[ƒ^‰»Šw‰ïA2006”N6ŒŽ.

 


•ñ“¹ŠÖŒWŽ‘—¿


 

•ªŽq‹@”\Œ¤‹†Š‚ª‘åã‘åŠwA‹ž“s•{—§ˆã‰È‘åŠw‚Æ‚ª‚ñŽ¡—Öò‚ÌŠJ”­‚ð–ÚŽw‚µ‚½‹¤“¯Œ¤‹†‚ðŠJŽnA2023”N11ŒŽ1“ú.

•ªŽq‹@”\Œ¤‹†Š‚ªƒCƒ“ƒVƒŠƒRƒXƒNƒŠ[ƒjƒ“ƒO‚Å—LŒø¬•ª‚ð”­Œ©F–¯ŠÔŒ¤‹†‹@ŠÖ‚©‚烃Cƒ„ƒŠƒeƒB‚ðŽó—ÌA2023”N10ŒŽ23“ú.

VŒ^ƒRƒƒiƒEƒCƒ‹ƒXiCOVID-19jŽ¡—ÖòŒó•â‰»‡•¨ƒŠƒXƒg‚ð”­•\F¢ŠEÅ‚…€‚̃Rƒ“ƒsƒ…[ƒ^ƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚É‚æ‚éˆã–ò•i•ªŽqÝŒv•û–@˜_‚Ŭ‰ÊA2022”N9ŒŽ21“ú.

ƒnƒ~ƒKƒL‚È‚Ç‚ÉŽg‚í‚ê‚鬕ª‚ªŒûo“à‚É‚¨‚¯‚éVŒ^ƒRƒƒiƒEƒCƒ‹ƒX‚ÌŽå—vŠ´õŒo˜H‚ð‘jŠQA2021”N10ŒŽ4“ú.

RVŒ^ƒRƒƒiƒEƒCƒ‹ƒXiSARS-CoV-2j–ò‚̈ã–ò•iŒó•âƒŠƒXƒg‚ð”­•\A2020”N5ŒŽ9“ú.

—ÊŽq—ÍŠwŒvŽZ‚É‚æ‚èˆã–ò•i‚ÌŽó—e‘̃Tƒuƒ^ƒCƒv‘I‘ð«‚Ì—\‘ªEÄŒ»‚ɬŒ÷A2017”N2ŒŽ15“ú.

Šj“àŽó—e‘̃X[ƒp[ƒtƒ@ƒ~ƒŠ[‚É‚¨‚¯‚郊ƒKƒ“ƒh”FŽ¯‹@\‚ÌŒ´—‚̉𖾂ɬŒ÷A2015”N11ŒŽ4“ú.

—L‹@‰»Šw”½‰ž‚É‚¨‚¯‚éd—v–¢‰ðŒˆ–â‘è‚Å‚ ‚锽‰ž–Ê—§‘Ì‘I‘ð«‚Ì–{Ž¿“IŒ´—‚̉𖾂ɬŒ÷A2015”N4ŒŽ17“ú.

ƒAƒ~ƒmŽ_”z—ñiˆêŽŸ\‘¢j‚©‚çƒ^ƒ“ƒpƒNŽ¿‚Ì—§‘Ì\‘¢iŽOŽŸ\‘¢j‚ªŒ`¬‚³‚ê‚郃JƒjƒYƒ€‚̈ê’[‚ðŒ´ŽqE“dŽqƒŒƒxƒ‹‚ʼn𖾂·‚邱‚ƂɬŒ÷Aˆã–ò•i‚â”_–ò‚ªŒø‰Ê‚ðŽ¦‚·ƒƒJƒjƒYƒ€‚̈ê’[‚𖾂炩‚É‚µ‚½A2013”N12ŒŽ23“ú.

•ªŽq‹@”\Œ¤‹†ŠiInstitute of Molecular Functionj‚ªƒRƒ“ƒsƒ…[ƒ^ã‚ňã–òŒó•â‰»‡•¨‚ðƒXƒNƒŠ[ƒjƒ“ƒO‚Å‚«‚éƒVƒXƒeƒ€‚ð‘ŽY‚Æ‚µ‚Ă͉‚ß‚Ä‘“àŠO‚̈ê”ÊŽsê‚Ŕ̔„ŠJŽn‚·‚éA2006”N11ŒŽ16“ú.

•ªŽq‹@”\Œ¤‹†ŠiInstitute of Molecular Functionj‚ªAŽ¾Š³‚ÉŠÖ‚í‚éƒ^ƒ“ƒpƒNŽ¿‚Ì—§‘Ì\‘¢‚Ì‚Ý‚©‚çA‚»‚ÌŽ¾Š³‚ɑ΂·‚éˆã–òŒó•â‰»‡•¨‚ð‚¸“x‚É—\‘ª‚Å‚«‚颊E‰‚ÌŠvV‹Zp‚ðŠJ”­A2006”N5ŒŽ8“ú.

Institute of Molecular Function‚ªuHyperChemv‚©‚çuGaussianv‚ðŽÀs‚·‚邽‚߂̃Cƒ“ƒ^[ƒtƒFƒCƒXuGaussian Interface for HyperChemv‚ðŠJ”­A‚±‚ê‚É‚æ‚袊EÅ‹­ŒvŽZ‰»ŠwŠÂ‹«‚ðŽÀŒ»A2005”N8ŒŽ22“ú.

Institute of Molecular Function‚ª‚«”\ƒ^ƒ“ƒpƒNƒ‚ƒfƒŠƒ“ƒOŽx‰‡ƒVƒXƒeƒ€uHomology Modeling for HyperChemv‚ðŠJ”­A2005”N7ŒŽ11“ú.

 


‹LŽ–iŽæÞ‚ðŽó‚¯‚½‚à‚Ìj


 

u•ªŽq‹@”\Œ¤‹†Š‚ª‘åŠw‚Æ‚Ì‹¤“¯Œ¤‹†‚ð„iF‚ª‚ñŽ¡—Öò‚È‚ÇAŽó‘õŽ–‹Æ‚Ö‚à’e‚Ýv. CCSnewsA2023”N11ŒŽ7“ú.

u‘n–òŽó‘õŒ¤‹†‚ªD’²„ˆÚF‘n—§‚Q‚OŽü”N‚ŃLƒƒƒ“ƒy[ƒ“‚àv. ‰»ŠwH‹Æ“ú•ñA2023”N6ŒŽ29“úA7–Ê.

u•ªŽq‹@”\Œ¤‹†Š‚ªƒRƒƒiŠ´õÇŽ¡—Öò‚ÌŒó•â•¨Ž¿‚ðƒŠƒXƒg‰»F‘SŒn—ÊŽq‰»ŠwŒvŽZ‚ʼnðÍA—L—p«‚‚¢ˆã–ò•iŠJ”­‚É“¹v. CCSnewsA2022”N9ŒŽ27“ú.

uˆã—ÃŒnŽó‘õŒ¤‹†‚̈˗Š‘FƒRƒƒiŠÖ˜A‚âhRÜÝŒv‚È‚Çv. ‰»ŠwH‹Æ“ú•ñA2022”N6ŒŽ29“úA7–Ê.

uƒRƒƒiŽ¡—Öò’Tõ‚Å’–ÚFSBDD‹ZpƒRƒA‚ÉŽó‘õŒ¤‹†v. ‰»ŠwH‹Æ“ú•ñA2021”N6ŒŽ30“úA7–Ê.

uVŒ^ƒRƒƒi‚ÌŒ¤‹†‚Ŭ‰ÊF‘å‹K–͉¼‘zƒXƒNƒŠ[ƒjƒ“ƒOv. ‰»ŠwH‹Æ“ú•ñA2020”N7ŒŽ16“úA7–Ê.

u•ªŽq‹@”\Œ¤‹†Š‚ªVŒ^ƒRƒƒiƒEƒCƒ‹ƒX‚̈ã–ò•iŒó•â‰»‡•¨FƒCƒ“ƒVƒŠƒR‘n–ò‹Zp‚Å”­Œ©AŠù‘¶–ò64•i–Ú‚ÆŒ‹‡e˜a«‚‚¢29•¨Ž¿‚ðƒŠƒXƒg‰»v. CCSnewsA2020”N5ŒŽ9“ú.

u•ªŽq‹@”\Œ¤‹†Š‚ªƒCƒ“ƒVƒŠƒR‘n–òŽó‘õŒ¤‹†ƒT[ƒrƒXF’á—¿‹àE‚¸“x‚ÅŽÀÑASBDD•ª–ì‚Ì•L‚¢ŒvŽZ‰»Šw‹Zp‚ɑΉžv. CCSnewsA2019”N9ŒŽ5“ú.

u“ÆŽ©‹Zp‚Å‘n–òŒ¤‹†Žx‰‡F‚“x‚ÈŒvŽZ‰»Šw‹@”\‚ð“‹Úv. ‰»ŠwH‹Æ“ú•ñA2019”N6ŒŽ17“úA9–Ê.

uƒhƒbƒLƒ“ƒO‰ðÍ‹@”\‚ðŠg[FŠO•”ƒ\ƒtƒg‚Ƃ̘AŒg‹­‰»v. ‰»ŠwH‹Æ“ú•ñA2018”N6ŒŽ21“úA9–Ê.

u•ªŽq‹@”\Œ¤‹†Š‚ªƒCƒ“ƒVƒŠƒR‘n–ò‹@”\‚ð‘å•‹­‰»A—eˆÕ‚Ƀ^ƒ“ƒpƒNŽ¿‚Ì‘SŒn—ÊŽq—ÍŠwŒvŽZAVina‚É‚æ‚éƒXƒNƒŠ[ƒjƒ“ƒOŽ©“®‰»‚àv. CCSnewsA2018”N3ŒŽ9“ú.

uONIOM–@‚Æ“ÆŽ©‚ɘAŒgF•¡‡‘Ì\‘¢‚𸖧‰ðÍv. ‰»ŠwH‹Æ“ú•ñA2017”N6ŒŽ21“úA9–Ê.

u•ªŽq‹@”\Œ¤‹†Š‚ªuHyperChemv‚ÌŽæ‚舵‚¢‚ðŠJŽnF•ªŽq\’z‚©‚çŒvŽZ‰»Šw‚Ü‚Å“‡A“ÆŽ©ŠJ”­SBDDƒc[ƒ‹‚ƘAŒgv. CCSnewsA2017”N5ŒŽ17“ú.

u•ªŽq‹@”\Œ¤‹†Š‚Ì’Ò‘ã•\‚炪Šj“àŽó—e‘̂̃Tƒuƒ^ƒCƒv‘I‘ð«‚ð—\‘ªAƒwƒeƒƒ_ƒCƒ}[\‘¢‚ªŠÖŒWAONIOM/FMO–@‚Å‘SŒn—ÊŽq—ÍŠwŒvŽZv. CCSnewsA2017”N3ŒŽ16“ú.

u•ªŽq‹@”\Œ¤‹†ŠFONIOM‘Ήž‚ð‹­‰»A‚½‚ñ‚Ï‚­‚Ì‘SŒnŒvŽZ‚ɑΉžv. ‰»ŠwH‹Æ“ú•ñA2016”N6ŒŽ24“úA9–Ê.

u•ªŽq‹@”\Œ¤‹†Š‚ªŠj“àŽó—e‘Ì‚Ì‘n–ò‚ւ̉ž—p‚É“¹F“ÆŽ©‚̉¼à‚ÅMDƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚ɬŒ÷AƒŠƒKƒ“ƒh”FŽ¯‹@\‚ÌŒ´—‰ð–¾v. CCSnewsA2015”N12ŒŽ29“ú.

u•ªŽq‹@”\Œ¤‹†ŠFƒXƒNƒŠ[ƒjƒ“ƒO‹@”\‚‘¬‰»A“ÆŽ©Žè–@‚Ì‘n–òƒ\ƒtƒgv. ‰»ŠwH‹Æ“ú•ñA2015”N6ŒŽ25“úA9–Ê.

u•ªŽq‹@”\Œ¤‹†Š‚Ì’Ò‘ã•\‚ª”½‰ž–Ê—§‘Ì‘I‘ð«‚ÅVƒ‚ƒfƒ‹’ñ¥Fƒtƒƒ“ƒeƒBƒA‹O“¹—˜_‚ðŠg’£A–µ‚E—áŠOŽ–—á‚ð‚·‚×‚Äà–¾v. CCSnewsA2015”N5ŒŽ8“ú.

u•ªŽq‹@”\Œ¤‹†Š‚Ì’Ò‘ã•\‚ª‚½‚ñ”’Ž¿‚̃tƒH[ƒ‹ƒfƒBƒ“ƒO‚ÅV”­Œ©FƒAƒ~ƒmŽ_‚̃VƒOƒiƒ‹”z—ñ‚ª‘S‘Ì\‘¢‚ð‹K’èA‘n–òŽwj‚Ö‚Ì“K—p‚àv. CCSnewsA2014”N2ŒŽ8“ú.

u•ªŽq‹@”\Œ¤‹†ŠF“ÆŽ©‹Zp‚Å‘n–òŽx‰‡ƒ\ƒtƒgAƒhƒbƒLƒ“ƒO‰ðÍ‚ÅVŽè–@v. ‰»ŠwH‹Æ“ú•ñA2008”N6ŒŽ26“úA6–Ê.

u•ªŽq‹@”\Œ¤‹†ŠF‚“x‹@”\‚ðŽg‚¢‚â‚·‚­’ñ‹ŸA“ÆŽ©ƒmƒEƒnƒE‚ÌSBDDv. ‰»ŠwH‹Æ“ú•ñA2007”N6ŒŽ29“úA6–Ê.

uƒqƒ…[ƒŠƒ“ƒNƒX‚ªHyperChem‚ÌÅVƒo[ƒWƒ‡ƒ“8‚ð”­”„F•ªŽq‹O“¹–@‚ÌŠO•”ƒGƒ“ƒWƒ“‚ð‘g‚Ýž‚ÝASBDD—̈æ‚Ö‚Ì•‹y‘£iv. CCSnewsA2007”N6ŒŽ28“ú.

uŽŸ¢‘ã\‘¢ƒx[ƒX‚Ì‘n–òŽx‰‡ƒVƒXƒeƒ€‚ðŠJ”­E”Ì”„‚·‚év. ‘ÛƒOƒ‰ƒtA 2007”N2ŒŽA290†A53•Å.

u–ò•¨E‚½‚ñ”’Ž¿ƒhƒbƒLƒ“ƒO‰ðÍFƒ}ƒ‹ƒ`‰»‡•¨”Å‚ð“Š“üA•ªŽq‹@”\Œ¤‚ªVƒc[ƒ‹A1–œŒÂ‚Ü‚ÅŽ©“®‰»v. ‰»ŠwH‹Æ“ú•ñA2006”N11ŒŽ24“úA9–Ê.

u•ªŽq‹@”\Œ¤‹†Š‚ªƒhƒbƒLƒ“ƒO‰ð̓c[ƒ‹‚̃}ƒ‹ƒ`‰»‡•¨‘Ήž”ÅFÅ‘å1–œ‰»‡•¨‚ðŽ©“®“I‚ɉðÍA‚¸“xŒvŽZ‚ðŽÀŒ»v. CCSnewsA2006”N11ŒŽ21“ú.

u•ªŽq‹@”\Œ¤‹†ŠF˜_—«dŽ‹‚Ì‘n–òŽx‰‡A“ú•Ä‰¢‚ł̔̔„‘̧‚àŠm—§v. ‰»ŠwH‹Æ“ú•ñA2006”N6ŒŽ29“úA6–Ê.

u•ªŽq‹@”\Œ¤‹†ŠFŽó—e‘Ì‘ŠŒÝì—p•”ˆÊ‚ðŽ©“®’TõFSBDD“‡ƒVƒXƒeƒ€ŠJ”­A•W“I‚½‚ñ”’Ž¿‚ƈã–ò•ªŽqA˜_—“IƒhƒbƒLƒ“ƒO‰ðÍv. ‰»ŠwH‹Æ“ú•ñA2006”N5ŒŽ30“úA9–Ê.

u•ªŽq‹@”\Œ¤‹†Š‚ª˜_—«dŽ‹‚ÌSBDDƒVƒXƒeƒ€‚ðŠJ”­F‚½‚ñ”’Ž¿‚ÌŒ‹‡•”ˆÊ‚ð“ÆŽ©Žè–@‚Å—\‘ªAƒo[ƒ`ƒƒƒ‹ƒXƒNƒŠ[ƒjƒ“ƒO‚Ö‚Ì”­“W‚àv. CCSnewsA2006”N5ŒŽ27“ú.

u•ªŽq‹@”\Œ¤‹†ŠF‚½‚ñ”’Ž¿—ÊŽq‰»ŠwŒvŽZONIOM–@AŠ®‘SGUI‰»‚ðŽÀŒ»v. ‰»ŠwH‹Æ“ú•ñA2006”N1ŒŽ5“úA8–Ê.

u•ªŽq‹@”\Œ¤‹†Š‚ªŠ®‘SGUIƒx[ƒX‚ÅGaussian/ONIOM–@‚ɑΉžFHyperChemŒü‚¯Šg’£ƒ\ƒtƒg‚ðŠJ”­A‘n–òŒ¤‹†‚ÉV‚½‚È“¹v. CCSnewsA2005”N12ŒŽ28“ú.

uŒ¤‹†ŠJ”­‚ÉV‚½‚È•û–@˜_ŠJ‚­CCSv. ‰»ŠwH‹Æ“ú•ñA2005”N12ŒŽ8“úA5–Ê.

u•ªŽq‹@”\Œ¤F‘n–òŽx‰‡ƒ\ƒtƒg‚ð“ÆŽ©ŠJ”­AÄŒ»«‚‚¢˜_—“Iƒ‚ƒfƒŠƒ“ƒO‚ª‰Â”\v. ‰»ŠwH‹Æ“ú•ñA2005”N10ŒŽ31“úA9–Ê.

u•ªŽq‹@”\Œ¤‹†Š‚ª‘n–òŽx‰‡ƒ\ƒtƒg‚ð“ÆŽ©ŠJ”­FHyperChem‚É‚½‚ñ”’Ž¿‰ðÍ‹@”\AÄŒ»«‚Ì‚‚¢˜_—“Iƒzƒ‚ƒƒW[ƒ‚ƒfƒŠƒ“ƒOv. CCSnewsA2005”N10ŒŽ27“ú.