Geometrical Dependence of the Highest Occupied Molecular Orbital in Bicyclic Systems: Origin of the π Facial Stereoselectivity of Bicyclic and Tricyclic Olefins

Motonori Tsuji Institute of Molecular Function

Cram's Rule

S: small substituent M: medium substituent L: large substituent

Felkin-Anh Model

Cieplak Model

ASSUMPTION: ELECTRON DONOR NATURE: C-H > C-C

Transition State

Sterically Unbiased Systems for Facial Selectivity

Electrophiles for Olefins Nucleophiles for Carbonyls

W: Electron-withdrawing Group D: Electron-donating Group

Explanation Using Cieplak Model

Steric, electrostatic, and torsional effects can ignore in these sterically unbiased systems.

Cieplak Model: Predictable

X = O, CH₂ Electrophiles for Olefins Nucleophiles for Carbonyls

W: Electron-withdrawing Group D: Electron-donating Group

A Reverse Facial Stereoselectivity with the Electron-donating Cyclopropane Ring

All models can not explain the facial stereoselectivity

Cram's Rule, Felkin-Anh Model, Cieplak Model Steric Effect, Electrostatic Effect, Torsional Effect, Ruled Out

Model Systems in Which the π Nature of Cyclopropane Is Maximized

Three-center Geometry Four-center Geometry Weak Strong Elecrophiles **Electrophiles** Both **Predicted** anti Electrophiles anti Weak Strong **Predicted** Elecrophiles Electrophiles **No Selectivity** anti anti

Geometrical Dependence of the HOMO in the Non-Conjugated Dienes

Three-center Geometry

Four-center Geometry

A1-symmetry orbitals (circles) and B1-symmetry orbitals (squares) were obtained at the RPM3 (solid), RB3LYP/6-31G* (open), and ROVGF/6-31G*//HF/6-31G* (dotted line) methods.

Origin of the Facial Stereoselectivity in the Four-center Geometry

Origin of the Facial Stereoselectivity in the Three-center Geometry

Effect of the Electron-withdrawing Group on the Facial Stereoselectivity

©Institute of Molecular Function Motonori Tsuji

Effect of the Electron-donating Group on the Facial Stereoselectivity

Conclusions

HOMO of molecule depends on the geometry.

This HOMO determines the facial stereoselectivity.

Depending on the molecular geometry, the symmetrical π orbital is mixed with the different types of σ orbitals.

These σ orbitals are mixed with π orbital via through-bond interactions.

As a result, through-bond interactions, such as hyperconjugation, bring about the orbital rehybridization (pyramidalization) and tilting, leading to the desired transition structure.

The magnitude of through-space interaction affects on the orbital sequence, thus leading to the reverse selectivity.

In the three center geometry, homoconjugation (homoaromaticity) strongly affects on the orbital sequence, thus giving the ambident selectivity.

M. TSUJI. ASIAN JOURNAL OF ORGANIC CHEMISTRY, 2015, 4, 659-673.